TRAUMA

Kamikaze Fellowship Course
www.resus.com.au
TRIMODAL DISTRIBUTION

leading cause of death in 1-40yo
• Ensure multidisciplinary approach
• **Prehospital phase**
 – Stay and play vs scoop and run
 • German/French vs Anglo-American model
 – Critical
 • High risk patients taken to hospital able to care
• **Hospital phase**
 – Team approach
 – Multisystem vs one system approach
 – Standardised approach-why?
DETERMINANTS OF LIFE THREATENING INJURY

Vitals
- GCS ≤ 13
- SBP < 90
- RR < 10 or > 29

Injury
- Penetrating
- Significant injury to ≥ 2 body areas
- ≥ 2 long bone fractures

Mechanism
- High speed impact
- Fall ≥ 6 m
- Crash speed ≥ 60 km
- Compartment intrusion
- Rollover
- Ejection
- Death in same accident
Primary survey and resuscitation
- A = Airway and cervical spine
- B = Breathing
- C = Circulation and haemorrhage control
- D = Dysfunction of the central nervous system
- E = Exposure

Secondary survey
Definitive treatment
the purpose of the primary exam is to EXCLUDE LIFE THREATENING EMERGENCIES
airway

- **Airway and cervical spine**
 - Assume cervical spine injury
 - Talking = have and able to maintain own airway
 - If airway compromised - jaw thrust? and clear airway
 - If GCS<=8 will need endotracheal tube (ETT)
 - In-line immobilisation
• Check position of trachea, respiratory rate and air entry

• If open chest wound seal with occlusive dressing

• If clinical evidence of tension pneumothorax will need immediate relief

• Place venous cannula through second intercostal space in the mid-clavicular line
- Assess pulse, capillary return and state of neck veins
- Identify exsanguinating haemorrhage and apply direct pressure
- Place two large calibre intravenous cannulas
 - Take venous blood for FBC, U+Es, and Cross match
- Give intravenous fluids
 - Crystalloid or colloid in adequate volume
- Attach patient to ECG monitor

PRIMARY SURVEY
circulation and haemorrhage control
– Assess level of consciousness using AVPU method
 • A = alert
 • V = responding to voice
 • P = responding to pain
 • U = unresponsive
– Assess pupil size, equality and responsiveness
PRIMARY SURVEY

exposure
- Airway obstruction
- Open pneumothorax
- Flail chest
- Tension pneumothorax
- Massive haemothorax
- Cardiac tamponade

PRIMARY SURVEY
detect immediate life-threatening emergencies
COMMON QUESTIONS

• when do we log roll?-part of primary

• when do we do a F.A.S.T.? - part of primary
• Good decision making tool for identifying the need for laparotomy in hypotensive patients (Systolic BP < 90):
 – sensitivity 100%, specificity 96% and
 – negative predictive value of 100% (NPV).

F.A.S.T.
SECONDARY SURVEY

- Head to toe examination
- **Complete** neurological examination
- *Tubes and fingers in every orifice*- maybe
- Remaining diagnostics, imaging and special studies
- Definitive treatment
- Stabilization and transfer
CHEST INJURIES
Flail Chest

• part of chest isolated
• paradoxical movement
• pulmonary contusion
• intubation and ICC
PNEUMOTHORAX
TENSION PNEUMOTHORAX

• due to flap-valve effect

• air enters pleural space but can’t escape

• results in haemodynamic compromise

• needs decompression

 • 14G 2nd IC space mid-clavicular line

• beware mimics
HAEMOTHORAX

1500 mL after ICC insertion and 200mL/hr for 2 hours are indications for thoracotomy.

- Stable patient
 - >200mL/hr
 - >1500mL total

- Unstable patient
 - >100mL/hr
 - >1000mL total
PERICARDIAL TAMponade

1. Hypotension
2. Diminished heart sounds
3. Jugular venous distension

-Very difficult to ascertain
-Only occurs in <30% of trauma patients
PERICARDIAL TAMPONADE
More Chest Trauma
• Clinical diagnosis

• 50% chance of seeing on CXR

• Beware other injuries
 • liver and spleen

• Rule out serious injuries
 • pneumothorax

• analgesia

• intercostal blocks
1st and 2nd rib #

• Large forces needed
• Deceleration injury
• May indicate severe underlying injury
• 30% mortality
Sternal Fracture

• Low mortality if isolated
 • usually low force if wearing belt
 • If not wearing seat belt beware
 • up to 60% chance of other significant injuries

• CXR- exclude other injuries
• Sternal views- aren’t predictive
• ECG

• if isolated and good pain control can go home
Pulmonary Contusion

- about 75% of flail chest
- also occurs following blunt trauma
- Xray lags about 24 hrs
- 80% develop ARDS
- 50% develop pneumonia
- ventilate/keep dry/PEEP
Pneumomediastinum

- Subcut emphysema
- Hamman’s Sign- ‘crunch’ in systole
- air stripe around mediastinum
- treat conservatively
- PNEUMOMEDIASTINUM
 - breath sounds equal but increased JVP
 - decreased cardiac output
 - dissect neck at suprasternal notch and release
Pneumomediastinum

• Beware as can occur following ventilation
indications
- penetrating trauma
 - precordial stab wounds - >40% survival if:
 - performed within 10 min of arrest
 - an organised rhythm had been present
- not for blunt trauma - <3% survival
Mediastinal Injuries

AORTIC INJURY
Aortic Injury

• Mostly deceleration injury
• Lateral and frontal impact can cause
• High forces
• Chest pain, dyspnoea
• Hypertensive
• Pulse difference in legs vs arms
• Rupture usually die at scene
 • 85% die pre-hospital
 • 10% survive 4 hours

85% die pre-hospital
10% survive 4 hours
CXR in aortic injury

CXR cannot exclude aortic injury
- widened mediastinum
- blurred aortic knob
- left haemothorax
- right deviation of trachea and NGT
- depressed left mainstem bronchus

INVESTIGATIONS
CT chest- shows haematoma- good to screen, angiography (gold standard), TOE

will need repair, endoluminal or OR otherwise nearly all die.

widened mediastinum is 90% sensitive and 10% specific for thoracic transection, ie., 10% will have a normal CXR

Overall about 85% mortality
Beware aggressive fluid resuscitation of stable (SBP>90) patient with aortic injury.
Subgroup with CAD or >55yo do worst with immediate repair.
Ruptured diaphragm
• Most missed- of concern as they need surgical repair

• usually result from penetrating trauma

• most have other abdominal injuries

• most injuries are left sided as liver cushions the right

• investigations may not be diagnostic

• beware the low stab wound to the back

• injuries associated with higher risk of diaphragm rupture are:
 • lat rib fractures
 • penetrating left upper quad wounds
 • pelvic fracture

Ruptured Diaphragm
Tracheobronchial

- 80% near carina
- mediastinal and cervical emphysema
- Consider in persistent airleak
- Needs operative repair if persistent
Abdominal Trauma
Risk Factors for abdo injury

• High speed
• Pedestrian struck by vehicle
• Fall from greater than standing height
• Hypotension ie., SBP<100mmHg
• Significant injuries above and below
 • ie., chest and pelvis
Presentation

• Penetrating or blunt
• Seat belt marks- lap belts associated with:
 • Chance fracture (L1)
 • Small bowel injury
 • Pancreatic injury
• PR blood- from injured bowel
• High riding/mobile prostate - urethral rupture
• Hypotension
 • <30% of patients have both hypotension and tachycardia
Immediate laparotomy

- Evisceration
- Gunshot wound
- Stab wound and peritoneum breach
- Continued hemodynamic instability
- Peritonism
- Free gas on X-ray
- Ruptured diaphragm

Beware: A positive FAST or positive DPL are EMERGENT indications for a laparotomy
CT - Abdo

- IV contrast, discussion re triple contrast

- PROS
 - high sensitivity and specificity for haemorrhage
 - anatomical information
 - gives retroperitoneal structures
 - chest and pelvis views

- CONS
 - not at bedside
 - false negatives for hollow organs
 - difficult environment if unstable
 - contrast risks
 - access issues
DPL

• Frank blood aspiration >20mL adults, >10mL children
• RBC/mL - >100,000 in blunt, >5000 in penetrating
• WCC - >500/mL
• Good sensitivity
• Performed at bedside
• Skill set
• Confounds CT by fluid in abdo
• False negatives
• not organ specific
• retroperitoneal injuries?
FAST

• In hypotensive patient (SBP<90) it’s ability as a decision making tool to decide who needs a laparotomy has:
 • NPV of 100%
 • Sensitivity of 100%
 • Specificity of 96%
FAST

• identifies free fluid
• identifies pericardial effusion
• 50% of abnormal scans will be identified in Morrison’s pouch
• Several views
• picks up between 250 and 800 mL

• **PROS**
 • easy, quick, repeatable, non-invasive, done at bedside
 • used for other things also
 • Can look at chest and pelvis

• **CONS**
 • operator dependant
 • may be difficult if obese, bowel gas
 • false negatives/positives
 • hollow viscus injury
 • Normal FAST may still need CT
CXR

• gas under the diaphragm
• elevated hemidiaphragm
• Grey Turner’s
 • flank discolouration
 • late sign retroperitoneal haematoma, also in haemorrhagic pancreatitis

• Kehr’s sign
 • left shoulder referred pain due to subdiaphragmatic irritation

• Cullen’s sign
 • periumbilical echymosis due to retroperitoneal bleed, haemorrhagic pancreatitis, ectopic pregnancy

• Rovsing’s sign
 • RLQ pain with LLQ palpation- appendicitis
PELVIC FRACTURES
5-20% mortality
30% if open
50% if haemodynamic compromise

Potential injuries

- **Vascular**
 - Common iliac artery
 - Superior gluteal artery
- **Neurological**
 - Lumbar and sacral plexus
- **Urogenital**
 - Bladder, urethra
 - Vagina, cervix, uterus
 - Seminal vessels
- **Bowel**
 - Sigmoid colon
 - Rectum, anus
Key and Cornwell/Kane

- **Type I**
 - Individual bone fracture
 - Intact pelvic ring
 - Stable

- **Type II**
 - Single break in ring
 - Eg ipsilateral pubic rami, Pubic symphysis
 - 25% have major soft tissue and visceral injuries

- **Type III**
 - Double Break in ring
 - Bilat fractures of pubic rami
 - Unstable

- **Type IV**
 - Acetabular fractures
MANAGEMENT

- ABC
- Fluid resuscitation
- Analgesia
- Stabilise the fracture
 - Commercial device
 - Sheet to wrap pelvis
- Definitive treatment
 - Fixation
 - Angiography and embolisation
Angiography in pelvic #

- Posterior ring fractures cause arterial/venous injury
Over 50% of trauma deaths are associated with head injury.

Neurotrauma is associated with the majority of trauma deaths.
<table>
<thead>
<tr>
<th>Neurotrauma severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal</td>
</tr>
<tr>
<td>No loss of consciousness, and</td>
</tr>
<tr>
<td>Glasgow Coma Score (GCS) 15, and</td>
</tr>
<tr>
<td>Normal alertness and memory, and</td>
</tr>
<tr>
<td>No neurological deficit, and</td>
</tr>
<tr>
<td>No palpable depressed fracture or other sign of skull fracture</td>
</tr>
<tr>
<td>Mild</td>
</tr>
<tr>
<td>Brief (<5 minutes) loss of consciousness, or</td>
</tr>
<tr>
<td>Amnesia for event, or</td>
</tr>
<tr>
<td>GCS 14, or</td>
</tr>
<tr>
<td>Impaired alertness or memory</td>
</tr>
<tr>
<td>No palpable depressed fracture or other sign of skull fracture</td>
</tr>
<tr>
<td>Moderate or potentially severe</td>
</tr>
<tr>
<td>Prolonged (>5 minutes) loss of consciousness, or</td>
</tr>
<tr>
<td>Persistent GCS <14, or</td>
</tr>
<tr>
<td>Focal neurological deficit, or</td>
</tr>
<tr>
<td>Post-traumatic seizure, or</td>
</tr>
<tr>
<td>Intracranial lesion on CT scan, or</td>
</tr>
<tr>
<td>Palpable depressed skull fracture</td>
</tr>
</tbody>
</table>
Head Trauma

• Head injury and hypotension - look elsewhere

• Primary Injury
 • will occur at point of injury
 • Axonal shear injury
 • cerebral oedema
 • MRI better than CT
 • Cerebral Contusion
 • in about half of cases with haematomas
 • frontal and temporal lobes

• Haematomas

• SAH- distinguish if SAH is primary or secondary event
Head Trauma

• Secondary Injury
 • due to hypoxia
 • due to ischaemia
 • due to oedema
BEWARE
head injury + hypotension
LOOK elsewhere for cause of hypotension

Cushing’s response
Hypertension
Bradycardia
Apnoea

late and unreliable

Cushing reflex
autoregulation
CPP = MAP - ICP
How to assess Head Injury
Assessment of HI

• Loss of Consciousness - important predictor for severity of BLUNT trauma.
 • duration = severity
 • May not occur in penetrating or localised blunt
• Level of Consciousness
 • change in GCS of >2 is significant
• Amnesia - antegrade or retrograde
 • >24 is a marker for severe head injury
• Headache - common
• Nausea - common
• Vomiting = increased severity of injury
• Other
 • Age >65 have greater chance of complications
 • anticoagulation
 • VP shunt etc..

Kas’s ‘HAGLE’ Score
who to CT?

major and moderate head injury YES

ie anything < GCS of 13!

What about minor head injury?

GCS 13-15 following LOC
LOC < 30 min
any amnesia
Panel 1: Canadian CT Head Rule

CT Head Rule is only required for patients with minor head injuries with any one of the following:

- High risk (for neurological intervention)
 - GCS score <15 at 2 h after injury
 - Suspected open or depressed skull fracture
 - Any sign of basal skull fracture (haemotympanum, 'raccoon' eyes, cerebrospinal fluid otorrhoea/rhinorrhoea, Battle’s sign)
 - Vomiting > two episodes
 - Age > 65 years

- Medium risk (for brain injury on CT)
 - Amnesia before impact > 30 min
 - Dangerous mechanism (pedestrian struck by motor vehicle, occupant ejected from motor vehicle, fall from height > 3 feet or five stairs)

Minor head injury is defined as witnessed loss of consciousness, definite amnesia, or witnessed disorientation in a patients with a GCS score of 13-15.
Glascow Coma Scale

- Used for prognosis - but not strong correlator with outcome
 - GCS 15 - 0.2% mortality
 - GCS < 8 - 40% mortality
 - GCS 8 is
Base of skull fracture

• Haemotympanum

• Battle’s sign (mastoid area echymosis)

• Raccoon’s eyes (orbital area echymosis)

• CSF leak - oto / rhino
 • halo test.

• Plain XR-NO

• CT head - air in sphenoid sinus
Battle’s sign
Raccoon eyes
Skull fractures

Depressed - neurosurgery
linear - no surgery
open - surgery
Occipital - contrecoup
Extradural

• post branch middle meningeal artery

• Not severe underlying brain injury

• present with
 • brief LOC
 • skull fracture 90%
 • mortality 30%
Subdural

- More common than extradural (6x)
- Tearing of veins between dura and arachnoid
- Occur in alcoholics, demented patients and the elderly
- Higher mortality than extradural

Classification

- Acute - < 24hrs - greatest mortality
- Subacute - 1-14 days
- Chronic > 14 days
Intracerebral bleed
C spine injuries
Nexus

- No midline cervical tenderness
- No focal neurology
- Normal level of alertness
- No intoxication
- No distracting injury
Canadian C spine

8900 pt

• High Risk
 • >65yo
 • paraesthesia
 • mechanism
 • fall >1m/ 5 stairs
 • high speed MCA
 • rollover
 • bicycle acciden
 Atlantiso-axial dislocation

- Fatal most of the time
- transverse ligament rupture of dens
Teardrop fracture

- Extension injury
- Unstable
facet dislocation

• Stable if no fracture
• look for facet fracture
• 50% subluxation
• reduce under GA-neurosurgery
Odontoid fractures

- Flexion injury most likely

- Type I
 - tip of dens

- Type II
 - most common
 - at junction of body and dens - non displaced

- Type III
 - through body
 - unstable
Hangman’s fracture

- Extension
- Bilat # pedicles of axis
- Unstable
- Probably no cord injury as widest point
Jefferson fracture

- Compression # C1
- Uare
- Unstable
Clay shoveler’s fracture

- C6, C7 or T1 spinous process fracture secondary to sudden load on a flexed spine
Neck Wounds
Neck wounds

1. Clavicles to cricoid
2. Cricoid to angle of mandible
3. Angle mandible and base skull

Diagram:
- Clavicles to cricoid
- Cricoid to angle of mandible
- Angle mandible and base skull
Neck trauma

• Zone II most common
• Airway may easily become compromised
• Can exsanguinate
• Air embolus
 • Machine murmur
 • Trandelenburg + left lat decubitus
 • Prevents air bubble migration
Neck trauma

• OR if
 • penetration of platysma
 • gas from wound
 • neuro deficit
• Other ie angio
 • if expanding haematoma
 • altered pulses
Burns
<table>
<thead>
<tr>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial-thickness burns >20% in all age groups, or >10% in the under 10</td>
</tr>
<tr>
<td>and over 50 age groups</td>
</tr>
<tr>
<td>Full-thickness burns >5% in any age group</td>
</tr>
<tr>
<td>Burns involving face, eyes, ears, hands, feet, genitalia, perineum or</td>
</tr>
<tr>
<td>a major joint</td>
</tr>
<tr>
<td>Inhalation burns</td>
</tr>
<tr>
<td>Electrical burns, including lightning injury</td>
</tr>
<tr>
<td>Burns associated with other significant injuries</td>
</tr>
<tr>
<td>Smaller burns in patients with pre-existing disease that could</td>
</tr>
<tr>
<td>complicate management</td>
</tr>
</tbody>
</table>
Spinal Cord Injury
Dorsal Columns

Lateral Corticospinal

Lateral Spinothalamic

Ventral Corticospinal

Lateral Corticospinal

Lateral Spinothalamic

Proprioception

vibration, joint position, pressure, touch

MOTOR

Pain, temperature

Proprioception

Proprioception

Proprioception

Proprioception

Ventral Spinothalamic
Dorsal Columns

- Vibration, joint position, pressure, touch

Lateral Corticospinal
- MOTOR
 - Pain, temperature

Lateral Spinothalamic
- Proprioception

Ventral Corticospinal
- Axial and prox limb

Ventral Spinothalamic

Lateral corticospinal fibers cross at medulla and project to the spinal cord. Lateral spinothalamic fibers also cross at medulla, while ventral corticospinal fibers cross at a higher level within the spinal cord. Dorsal columns carry sensory information, while lateral columns are involved in motor functions.
SCIWORA

• Diagnosed with MRI

• Usually poor prognosis
Transverse Spinal Cord Syndrome

• Following total damage transversely across cord

• there is total paralysis and anaesthesia and areflexia below the level of the injury
Sacral Sparing

- The sensitivity + motor function is preserved in otherwise transverse injury.
- This implies incomplete damage
Anterior cord synd

• Anterior cord injury (ant spinal artery)
• Flexion/rotation or vertical load injury
• Deficits are:
 • Motor loss below level injured
 • Spinothalamic affected so loss of temp/analgesia and coarse touch
• Dorsal columns intact
• Poor prognosis
Dorsal Column Synd

• Rare
• Usually hyperextension or direct injury to the back

• Clinically
 • Proprioception, vibration and fine touch are affected
Central Cord Synd

- Hyper-extension injury
- Incomplete paralysis and sensory loss
 - arms>legs
 - Proximal>distal
Brown-Sequard

• One half of the cord is damaged

• Ipsilateral loss of
 • motor
 • light touch
 • joint position
 • vibration

• Contralateral (Spinothalamic) loss of
 • Pain
 • Temperature
Steroids in Cord Injury

- Controversial
- Contraindicated in
 - contaminated open injuries
 - perforated bowel
 - established sepsis
- Relatively Contraindicated
 - DM
Spinal Shock

Do not confuse this with neurogenic shock
Spinal Shock

• There is a loss of cord activity below the lesion
• It may last hours to weeks
• In recovery
 • There is return of function or
 • a spasticity occurs
• Recovery is heralded by
 • return of the Babinski Reflex followed by
 • the perineal reflexes
Neurogenic Shock

- Bradycardia - 50-60bpm
- Hypotension - <100mmHg
- Poikilothermic
Beware

• The patient with spinal cord injury may also have other injuries

• In these patients HR of 90 may represent a significant tachycardia
 • Look for the bleed.
Management

- Immobilisation
- ABC - may need ETT
- IVF
- Temp monitoring
- Treat the cause - ie if bony injury to cord - repair
- Steroids - use in association with spinal unit directions
 - Benefit if <8hrs
 - Methylprednisolone as per protocol
 - Load 30mg/kg IV
 - Then infusion
Trauma and Pregnancy
• More spleen and liver injuries

• Blunt trauma is leading cause of maternal death

• Penetrating trauma is leading cause of fetal death

• Stabilize the mother

• right side up at > 20 weeks

• CTG for 4 hours

• Beware abruptio placentae
 • abdo pain, uterine tetany, +/- PV bleed
 • fetal distress -tachy/ brady

• RhoGAM if Rh neg
FAXMAX TRAUMA
Facial Trauma

• Up to 60% will have injuries of other systems
• If >= 3 facial fractures, it is associated with 33% chance of base of skull
• In ~ 5% haemorrhage can be massive and difficult to manage.
• Techniques to manage haemorrhage include:
 • direct pressure
 • anterior nasal packs
 • Foley catheters
The Nose

- 2/3 cartilage
- Repair can be delayed, until swelling improves
- Look for septal deviation
- Exclude septal haematoma
 - may only be minor blueish discolouration
 - can result in necrosis with superimposed infection within 24 hours
 - leads to cartilage destruction within 24 hours
Mandibular fractures

- 3 x force needed to fracture nose
- Malocclusion
- Jaw/facial deformity
- Mental nerve affected

X-ray- mandible may not be satisfactory
OPG (orthopantamogram) - must be able to sit upright.
Zygoma
• Common to have fractures
• May appear as depression
• Needs elevation, but not needed immediately
• Beware other facial injuries
• Usually not isolated but associated with:
 • zygomaticomaxillary fracture
 • Orbital blowout fracture
Maxilla
Maxilla

Beware orbital floor fractures
Look for diplopia (present in 85%)
inferior rectus entrapment
Look for other injuries
OR if entrapment of muscle.
LE FORT FRACTURES
- **LE FORT I**
 - Horizontal fracture of lower third of maxilla
 - Upper dental arch mobile

- **LE FORT II (most common)**
 - Maxillary, nasal bones and medial orbit
 - Nose + upper dental arch mobile

- **LE FORT III (craniofacial dysjunction)**
 - Fractures through zygoma, orbits and base of nose - mid-facial skeleton is separated from the cranium
 - Maxilla + Zygoma mobile
• Can you get different LeFort fractures on each side of the face?
Management

• Airway control

• Haemorrhage control- may need OR for this

• Significant injury- C-Spine protection
 • Clear spine early to sit patient up

• Analgesia

• Tet tox

• Antibiotics
Penetrating facial injuries
Penetrating facial injury

• Can result in significant injury

• Airway may be compromised early
 • may need surgical airway

• Arterial injury is not uncommon
 • up to 40% need carotid and vertebral artery angiography

• Nerve injuries are not uncommon
 • facial nerve
 • mandibular branch of trigeminal